Renesas Electronics Delivers Highly Automated Driving Solution Kit to Accelerate Development of Autonomous-Driving Vehicles

Highly Autonomous Driving System Based on Renesas’ Automotive Dedicated ISO 26262 ASIL-B SoC and ISO 26262 ASIL-D MCU for Development of Safe ECUs

SANTA CLARA, Calif. — (BUSINESS WIRE) — October 19, 2016 — Renesas Electronics Corporation (TSE: 6723), a premier provider of advanced semiconductor solutions, today announced a highly automated driving (HAD) solution kit that delivers high computing performance targeted at automotive functional safety to reduce development time of electronic control units (ECUs). The HAD solution kit is based on two Renesas R-Car H3 Starter Kit Premier and the automotive control RH850/P1H-C microcontroller (MCU), and therefore is compliant with both ISO 26262 ASIL-B functionality safety standard and ISO 26262 ASIL-D standard (Note 1). The new solution kit enables system developers to immediately evaluate functions and software in an environment that is similar to the actual development of ECUs, thereby reduces developers’ time and efforts when porting software to the actual ECUs.

The automotive market is moving rapidly to make highly autonomous driving a reality for consumers by 2020. However, this is a challenging path as autonomous driving level 3 and beyond (Note 2) requires high computing power while maintaining safety and ensuring quality. During the initial development of autonomous driving systems, OEM and Tier-1 system developers first create prototype systems and test them using PCs. To adapt a prototype system to fit the actual vehicle, features such as low power consumption and high performance, operation under high temperature, and compliance with specific standards such as functional safety and system specifications must all be aligned. Therefore, the step to adapt a newly developed system into the actual vehicle is known to be challenging.

The Renesas HAD solution kit supports software development and software verification that Tier-1s and OEMs are using for automotive ECUs. This is being integrated in a robust housing with multiple interfaces that provides rich connectivity close to actual automotive ECUs.

Key features of the new HAD solution kit:

(1)

 

Powerful HAD solution kit that accelerates software development of mass production ECUs that are necessary to achieve autonomous driving

The solution kit simultaneously provides the high computing power required for autonomous driving, maintains a high level of safety, and ensures quality as it connects two Renesas’ market-proven R-Car H3 system-on-chip (SoC)-based starter kits and one RH850 P1H-C MCU through on-board high-speed interfaces and provides connection to peripherals using multiple external interfaces, such as CAN-FD, FlexRay and Ethernet.

The solution kit simplifies software development for mass production ECUs by allowing evaluation of the development using the HAD solution kit in the vehicle. The robust and compact design of the housing allows testing in the lab as well as in test drives that meet automotive requirements, which are known to be demanding in relation to operating temperature, low power consumption and small implementation size.

(2)

 

Compliance with high functionality safety standards: Based on dual R-Car H3 Starter Kits that conform to ISO 26262 ASIL-B and a RH850/P1H-C MCU that conforms to ISO 26262 ASIL-D

The implemented R-Car H3 Starter Kit Premier is based on the R-Car H3: a high-end, high-performance SoC designed for automotive applications. The SoC based on ARM® Cortex®-A57/A53 cores can be used as an automotive computing platform solution for driving safety support systems and in-vehicle infotainment systems, and achieves processing performance of over 40,000 DMIPS (Dhrystone million instructions per second (Note 3)) for enhanced processing power. The R-Car H3 is also ISO 26262 ASIL-B compliant.

In addition, the R-Car H3 features powerful graphics processing units (GP-GPU) core by Imagination Technologies’ PowerVR® GX6650 and Renesas’ IMP-X5 parallel programming core with optimal structure for processing of computer vision and deep learning, to enable the advanced calculation processing required for autonomous driving.

1 | 2  Next Page »



Review Article Be the first to review this article


Featured Video
Jobs
GPS and Mobile GIS Sales Development for Duncan-Parnell Inc. at Charlotte, North Carolina
GIS Sales and Business Development for Duncan-Parnell Inc. at Ashland, Virginia
Regional Sales Manager (Eastern North America) for Teledyne Optech at Kiln, Mississippi
Engineer III - Hydraulics for State of Nebraska at Lincoln, California
Geospatial Mapping Training and Support Specialist for Duncan-Parnell Inc. at Morrisville, North Carolina
GIS Analyst for County of Bernalillo at Albuquerque, NM, New Mexico
Upcoming Events
911 Live 2021- at United States - Jun 29, 2021
GI_Forum 2021 | re.connecting spatially at Salzburg Austria - Jul 5 - 9, 2021
InterDrone 2021 --- Cancelled at Hyatt Regency Dallas TX - Aug 10 - 12, 2021
URISA GIS Leadership Academy at 701 Lee St #960 Des Plaines IL - Aug 16 - 20, 2021
University of Denver GIS Masters Degree Online
UAV Expo2021 -Register   & save



© 2021 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation TechJobsCafe - Technical Jobs and Resumes  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise