New Release of MSC Nastran Delivers Engineering Simulation Speed with Support for Larger Models

2013.1 provides improved parallel performance, accurate prediction of rotordynamic behavior, and robust nonlinear simulations

NEWPORT BEACH, Calif. — (BUSINESS WIRE) — December 9, 2013MSC Software Corporation, the leader in multidiscipline simulation solutions that accelerate product innovation, today announced the new release of MSC Nastran 2013.1, augmenting the groundbreaking capabilities like solver embedded fatigue, optimization for fatigue life and poroelastic material modeling introduced in the previous 2013 release. The new capabilities in 2013.1 provide engineers with faster performance for large models, ease of use, and nonlinear analysis improvements.

Release highlights of MSC Nastran:

ACMS Improvements for Faster Simulation Run Times

Automated Component Mode Synthesis (ACMS) in MSC Nastran has shown performance improvements over the past several releases to enable users to perform modal analysis of large models. The new release delivers further speed enhancements with 10% to 30% time reductions in the ACMS portion of large scale simulations reducing the time and cost of modal and automotive NVH simulations. In particular, overall run times dominated by I/O are mostly impacted.

Axisymmetric Rotordynamics for Improved Accuracy

Gas turbine and aircraft engine manufacturers can achieve more accurate prediction of the rotordynamic performance of structures with rotating components with the help of the new axisymmetric harmonic elements. Users can model geometrically axisymmetric structures subjected to general non-axisymmetric loading represented by harmonics, allowing engineers to capture the effects of the complex geometry of the rotors, achieving better results.

Support of Large Models

Improved integration has been achieved between MSC Nastran 2013 and SimXpert 2013 so very large models can be visualized.

Advanced Nonlinear Analysis Enhancements

The nonlinear analysis capabilities have been further improved to provide increased ease of use and flexibility to handle large models with efficiency.

  • Contact Improvements: The contact table that provides flexibility in defining contact interactions between multiple components has been reorganized to make it more readable, and requiring less user input, which is highly beneficial when modeling large assemblies typical to automotive and aerospace industries.
  • Linear perturbation steps like modal analysis, direct frequency, modal frequency, modal transient, direct complex-eigenvalue and modal complex eigenvalue analyses that follow nonlinear static or dynamic steps, require the element stiffness and mass matrices formed at the end of the nonlinear loading steps. The improved capability in the current release enables users to take advantage of the fidelity provided by the advanced elements of the nonlinear solution sequence.
  • Micromechanical composite material models are now achievable utilizing the e-Xstream Digimat technology within SOL 400 and SOL 700. This provides greater accuracy to the simulation.
  • Thermal stress analysis: Temperature mapping of multi-degrees of freedom heat transfer shell elements is enhanced, providing more accurate temperature distribution, in turn resulting in higher fidelity stress results in sequential thermal-mechanical analysis.
  • The User Defined Subroutine capability of MSC Nastran has been made much more user friendly reducing the overhead work needed, and providing the flexibility required for advanced analyses that could involve proprietary element formulations, custom material property formulations, application of specific rules to a contact problem, or integration of CFD applications.

Explicit Nonlinear Analysis for Transient Dynamics

New material models, namely Johnson-Cook model for damage criteria, and Gurson model to describe the plastic flow, have been implemented for explicit analysis, providing improved accuracy related to damage and failure of materials. Newly implemented user subroutine support also helps users customize the model with user-defined material models, flow boundary conditions, friction models etc. for improved simulations.

Other enhancements include Arbitrary Beam Cross Section (ABCS) enhancements to enable users to model unique beam cross sections, and monitor point enhancements to extract specific information from the analysis.

For more details about the new releases, please watch the on-demand new release webinar at http://bit.ly/1bKUSYw.

About MSC Software

MSC Software is one of the ten original software companies and the worldwide leader in multidiscipline simulation. As a trusted partner, MSC Software helps companies improve quality, save time, and reduce costs associated with design and test of manufactured products. Academic institutions, researchers, and students employ MSC’s technology to expand individual knowledge as well as expand the horizon of simulation. MSC Software employs 1,100 professionals in 20 countries. For additional information about MSC Software’s products and services, please visit: www.mscsoftware.com .

1 | 2  Next Page »


Featured Video
Jobs
Advanced Mechanical Engineer for General Dynamics Mission Systems at Canonsburg, Pennsylvania
Upcoming Events
Xponential 2024 at San Diego Convention Center San Diego CA - Apr 22 - 25, 2024
Esri Energy Resources GIS Conference at George R. Brown Convention Center Houston TX - Apr 24 - 25, 2024
GEOINT 2024 Symposium at Gaylord Palms Resort and Conference Center Kissimmee FL - May 5 - 8, 2024
GeoSpatial World Forum 2024 at Postillion Hotel & Convention Centre WTC Rotterdam Netherlands - May 13 - 16, 2024
GENEQ



© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation TechJobsCafe - Technical Jobs and Resumes  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise